Search results

1 – 10 of 18
Article
Publication date: 26 April 2023

Mudassar Rehman, Yanen Wang, Kashif Ishfaq, Haiou Yang, Ray Tahir Mushtaq, M. Saravana Kumar and Ammar Ahmed

Since the biomedical implants with an improved compressive strength, near bone elastic modulus, controlled porosity, and sufficient surface roughness, can assist in long term…

Abstract

Purpose

Since the biomedical implants with an improved compressive strength, near bone elastic modulus, controlled porosity, and sufficient surface roughness, can assist in long term implantation. Therefore, the fine process tuning plays its crucial role to develop optimal settings to achieve these desired properties. This paper aims to find applications for fine process tuning in laser powder bed fusion of biomedical Ti alloys for load-bearing implants.

Design/methodology/approach

In this work, the parametric porosity simulations were initially performed to simulate the process-induced porosity for selective laser-melted Ti6Al4V as per full factorial design. Continually, the experiments were performed to validate the simulation results and perform multiresponse optimization to fine-tune the processing parameters. Three levels of each control variable, namely, laser power – Pl (180, 190, 200) W, scanning speed – Vs (1500, 1600, 1700) mm/s and scan orientation – ϴ{1(0,0), 2(0,67°), 3(0,90°)} were used to investigate the processing performance. The measured properties from this study include compressive yield strength, elastic modulus, process-induced porosity and surface roughness. Finally, confirmatory experiments and comparisons with the already published works were also performed to validate the research results.

Findings

The results of porosity parametric simulation and experiments in selective laser melting of Ti6Al4V were found close to each other with overall porosity (less than 10%). The fine process tuning was resulted in optimal settings [Pl (200 W), Vs (1500 mm/s), ϴ (0,90°)], [Pl (200 W), Vs (1500 mm/s), ϴ (0,67°)], [Pl (200 W), Vs (1500 mm/s), ϴ (0,0)] and [Pl (200 W), Vs (1500 mm/s), ϴ (0,0)] with higher compressive strength (672.78 MPa), near cortical bone elastic modulus (12.932 GPa), process-induced porosity (0.751%) and minimum surface roughness (2.72 µm). The morphology of the selective laser melted (SLMed) surface indicated that the lack of fusion pores was prominent because of low laser energy density among the laser and powder bed. Confirmatory experimentation revealed that an overall percent improvement of around 15% was found between predicted and the experimental values.

Originality/value

Since no significant works are available on the collaborative optimization and fine process tuning in laser powder bed fusion of biomedical Ti alloys for different load bearing implants. Therefore, this work involves the comprehensive investigation and multi-objective optimization to determine optimal parametric settings for better mechanical and physical properties. Another novel aspect is the parametric porosity simulation using Ansys Additive to assist in process parameters and their levels selection. As a result, selective laser melted Ti alloys at optimal settings may help in examining the possibility for manufacturing metallic implants for load-bearing applications.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 July 2020

Fusheng Dai, Haiou Zhang and Runsheng Li

The study aims to fabricate large metal components with overhangs built on cylindrical or conical surfaces with a high dimensional precision. It proposes methods to address the…

Abstract

Purpose

The study aims to fabricate large metal components with overhangs built on cylindrical or conical surfaces with a high dimensional precision. It proposes methods to address the problems of generating tool-paths on cylindrical or conical surfaces simply and precisely, and planning the welding process on these developable surfaces.

Design/methodology/approach

The paper presents the algorithm of tool-paths planning on conical surfaces using a parametric slicing equation and a spatial mapping method and deduces the algorithm of five-axis transformation by addressing the rotating question of two sequential points. The welding process is investigated with a regression fitting model on a flat surface, and experimented on a conical surface, which can be flattened onto a flat surface.

Findings

The paper provides slicing and path-mapping expressions for cylindrical and conical surfaces and a curvature-speed-width (CSW) model for wire and arc additive manufacturing to improve the surface appearances. The path-planning method and CSW model can be applied in the five-axis fabrication of the prototype of an underwater thruster. The CSW model has a confidence coefficient of 98.02% and root mean squared error of 0.2777 mm. The reverse measuring of the finished blades shows the residual deformation: an average positive deformation of about 0.5546 mm on one side of the blades and an average negative deformation of about −0.4718 mm on the other side.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalizability for the fabrication based on arbitrary surfaces.

Originality/value

This paper presented an integrated slicing, tool-path planning and welding process planning method for five-axis wire and arc additive manufacturing.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 June 2020

Shangyong Tang, Guilan Wang, Cheng Huang, Runsheng Li, Siyu Zhou and Haiou Zhang

The modeling and optimization of a weld bead in the middle of the weld are often simple, as the forming process is dynamically balanced. However, the arc striking (AS) and arc…

398

Abstract

Purpose

The modeling and optimization of a weld bead in the middle of the weld are often simple, as the forming process is dynamically balanced. However, the arc striking (AS) and arc extinguishing (AE) areas of weld beads are generally abnormal because the dynamic processes at these areas are unstable. The purpose of this paper is to investigate the abnormal areas of the weld bead with optimization modeling methods in wire and arc additive manufacturing (WAAM).

Design/methodology/approach

A burning-back method was proposed to fill the slanted plane in the AE area. To optimize the welding parameters and obtain the optimal design, a response surface methodology was proposed to build the relationships between the input parameters and response variables.

Findings

The proposed burning-back method could fill the slanted plane in the AE area. Second-order models of abnormal areas were developed and the optimization effects were analyzed. The experimental results indicated that the relationship models at both ends were applicable and preferable for the optimization of weld beads.

Originality/value

In this paper, a burning-back method was proposed to optimize the slanted plane in the AE area. Second-order models of abnormal areas were established. The methods and models were preferable in the optimization of the abnormal areas in WAAM.

Details

Rapid Prototyping Journal, vol. 26 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2013

Haiou Zhang, Xiangping Wang, Guilan Wang and Yang Zhang

The purpose of this paper is to report a new direct metal manufacturing method which integrates freeform deposition process and micro rolling process, introduce the manufacturing…

1865

Abstract

Purpose

The purpose of this paper is to report a new direct metal manufacturing method which integrates freeform deposition process and micro rolling process, introduce the manufacturing principle and show the advantages of this method.

Design/methodology/approach

This paper introduces the hybrid manufacturing principle and devices first. Then, the key parameters of hybrid manufacturing process are studied by contrast experiments. The results of comparisons of manufacturing accuracy, microstructure and tensile test between freeform fabricated parts and hybrid manufactured parts show the advantages of this new direct manufacturing method.

Findings

The experiments results show that the accuracy of hybrid manufacturing method is improved obviously comparing with arc-based freeform deposition manufacturing method; the microstructure of the hybrid manufacturing part turns into cellular crystal instead of dendrite; the tensile strength of the part increases by 33 percent and the tensile deformation improved more than two times.

Originality/value

The paper presents a new hybrid direct metal manufacturing method for the first time. The hybrid manufacturing devices are developed. The experiments results show that the hybrid manufacturing method can be used on directly fabricating large metal components with outstanding quality, efficiency and low cost. The application prospect is great.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 January 2022

Xushan Zhao, Yuanxun Wang, Haiou Zhang, Runsheng Li, Xi Chen and Youheng Fu

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology…

275

Abstract

Purpose

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology positively supports the overlapping deposited in multi-beads between layers while actively assisting the subsequent layer's deposition in the wire and arc additive manufacturing (WAAM). Hybrid-deposited and micro-rolling (HDMR) additive manufacturing (AM) technology can smooth the weld bead for improved surface quality. However, the micro-rolling process will change the weld bead profile fitting curve to affect the overlapping coefficient.

Design/methodology/approach

Weld bead contours for WAAM and HDMR were extracted using line lasers. A comparison of bead profile curves was conducted to determine the influence law of micro-zone rolling on the welding bead contour and fitting curve. Aiming at the optimized overlapping coefficient of weld bead in HDMR AM, the optimal HDMR overlapping coefficient curve was proposed which varies with the reduction based on the best surface flatness. The mathematical model for overlapping in HDMR was checked by comparing the HDMR weld bead contours under different rolling reductions.

Findings

A fitting function of the bead forming by HDMR AM was proposed based on the law of conservation of mass. The change rule of the HDMR weld bead overlapping spacing with the degree of weld bead rolling reduction was generated using the flat-top transition calculation for this model. Considering the damming-up impact of the first bead, the overlapping coefficient was examined for its effect on layer surface flatness.

Originality/value

Using the predicted overlapping model, the optimal overlapping coefficients for different rolling reductions can be achieved without experiments. These conclusions can encourage the development of HDMR technology.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 November 2022

Ruizhe Wang, Runsheng Li, Guilan Wang, Mingbo Zhang, Jianwu Huang, Hang Lin and Haiou Zhang

Wire and arc additive manufacturing (WAAM) technology-based cold metal transfer (CMT) to produce large aluminum alloy parts has become more and more popular. In WAAM, wire is the…

Abstract

Purpose

Wire and arc additive manufacturing (WAAM) technology-based cold metal transfer (CMT) to produce large aluminum alloy parts has become more and more popular. In WAAM, wire is the only raw material. The purpose of this paper is to study the effect of wire composition on the microstructure and properties of the ZAlCu5MnCdVA alloy deposited by WAAM.

Design/methodology/approach

Two thin-walled ZAlCu5MnCdVA alloys with different wire compositions were prepared by WAAM. The copper contents were 4.7% (Al-4.7Cu) and 5.0% (Al-5.0Cu), respectively. The microstructure, element distribution and evolution of precipitated phases of the two samples were characterized and analyzed by optical microscopy, scanning electron microscopy and transmission electron microscopy. Hardness and tensile properties of samples were tested, and strengthening mechanism was analyzed in detail.

Findings

The results show that grain sizes of Al-4.7Cu and Al-5.0Cu are less than 40 μm. The average mass fraction of Cu in Al matrix and the number of nanometer scale θ'' and θ' phases are the main factors affecting the tensile properties of Al-Cu alloy. Tensile properties of two materials show different characteristics at room temperature and high temperature. Al-5.0Cu is better at room temperature and Al-4.7Cu is better at high temperature. The yield strength (YS), ultimate tensile strength (UTS) and elongation in the x direction of Al-5.0Cu at room temperature are 451 ± 10.2 MPa, 486 ± 10.2 MPa and 9 ± 0.5%, respectively. The YS, UTS and elongation in the x direction of Al-4.7Cu at high temperature are 290 ± 4.5 MPa, 356 ± 7.0 MPa and 13% ± 0.2%, respectively.

Originality/value

Experiments show that the increase of Cu element can improve the properties at room temperature of the ZAlCu5MnCdVA alloy by WAAM, but its properties at high temperature decrease.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 December 2022

Runyao Yu, Xingwang Bai, Xueqi Yu and Haiou Zhang

A new wire arc additive manufacturing (WAAM) process combined with gravity-driven powder feeding was developed to fabricate components of tungsten carbide (WC)-reinforced iron…

236

Abstract

Purpose

A new wire arc additive manufacturing (WAAM) process combined with gravity-driven powder feeding was developed to fabricate components of tungsten carbide (WC)-reinforced iron matrix composites. The purpose of this study was to investigate the particle transportation mechanism during deposition and determine the effects of WC particle size on the microstructure and properties of the so-fabricated component.

Design/methodology/approach

Thin-walled samples were deposited by the new WAAM using two WC particles of different sizes. A series of in-depth investigations were conducted to reveal the differences in the macro morphology, microstructure, tensile performance and wear properties.

Findings

The results showed that inward convection and gravity were the main factors affecting WC transportation in the molten pool. Large WC particles have higher ability than small particles to penetrate into the molten pool and survive severe dissolution. Small WC particles were more likely to be completely dissolved around the top surface, forming a thicker region of reticulate (Fe, W)6C. Large WC particles can slow down the inward convection more, thereby leading to an increase in width and a decrease in the layer height of the weld bead. The mechanical properties and wear resistance significantly increased owing to reinforcement. Comparatively, samples with large WC particles showed inferior tensile properties owing to their higher susceptibility to cracks.

Originality/value

Fabricating metal matrix composites through the WAAM process is a novel concept that still requires further investigation. Apart from the self-designed gravity-driven powder feeding, the unique aspects of this study also include the revelation of the particle transportation mechanism of WC particles during deposition.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 September 2021

Xushan Zhao, Yuanxun Wang, Guilan Wang, Runsheng Li and Haiou Zhang

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the shaping strain and residual stress. And the rolling parameters…

Abstract

Purpose

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the shaping strain and residual stress. And the rolling parameters combination was further optimized to guide the actual production.

Design/methodology/approach

This paper proposed a three-dimensional coupled thermo-mechanical model of the HDMR process. The validated model is used to investigate the influences of rolling parameters on stress and plastic strain (the distance between the energy source and roller [De–r], the rolling compression [cr] and the friction coefficient [fr]). The orthogonal optimization of three factors and three levels was carried out. The influence of rolling parameters on the plastic strain and residual stress is analyzed.

Findings

The simulation results show that HDMR technology can effectively increase the shaping strain of the weld bead and reduce the residual tensile stress on the weld bead surface. Furthermore, the influence of rolling parameters on stress and strain is obtained by orthogonal analysis, and the corresponding optimal combination is proposed. Also, the rolling temperature significantly affects the residual stress, and the rolling reduction has a substantial effect on the plastic deformation.

Research limitations/implications

Owing to the choice of research methods, this paper failed to study microstructure evolution.

Originality/value

This paper provides a reference principle for the optimal selection of rolling parameters in HDMR.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 March 2023

Lei Wan, Jian Xu, Yulai Li, Haiou Sun and Tao Zhang

The purpose of this paper is to improve the corrosion resistance of anodized 6063 Al alloy inertial air–water separator by means of silane technology and to investigate the effect…

219

Abstract

Purpose

The purpose of this paper is to improve the corrosion resistance of anodized 6063 Al alloy inertial air–water separator by means of silane technology and to investigate the effect of corrosion-generated surface roughness changes on aerodynamic performance.

Design/methodology/approach

The BTSE-KH560 double-layer silane film treatment technique is used to close micropores on the anodic oxide film surface. The microstructure of the coating is observed by scanning electron microscopy, the coating structure of the specimens is determined by X-ray diffraction (XPS) and the corrosion resistance is determined by electrochemical and salt-spray tests. Computational fluid dynamics is also used to calculate the effect of roughness and analyse the change in separator performance.

Findings

The silane film deposited on the surface of the anodic oxide film acts as a good seal against microporous defects on the surface of the anodic oxide film and reduces the surface roughness. Electrochemical and salt-spray tests show that the silane film improved the corrosion resistance of the anodized film. The roughness produced by the corrosion deteriorates the performance of the separator.

Originality/value

The porous structure of the anodized coating makes it easier for corrosive ions to enter the substrate and cause pitting corrosion. Therefore, in this study, the corrosion behaviour of the coating in the marine environment and its effect on aerodynamic performance are investigated using a BTSE-KH560 double-layer silane coating with a sealing effect.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 April 2022

Qingyong Chen, Guilan Wang, Haiou Zhang and Runsheng Li

The purpose of this paper is to study the influence of different rolling deformation parameters on the morphology, microstructure and mechanical properties of Inconel 718…

Abstract

Purpose

The purpose of this paper is to study the influence of different rolling deformation parameters on the morphology, microstructure and mechanical properties of Inconel 718 superalloy in hybrid plasma arc and micro-rolling (HPAMR) additive manufacturing.

Design/methodology/approach

In this paper, different deformation strains are designed, which are as-deposited, 15% and 30%. Two straight walls are fabricated by HPAMR for each kind of deformation. One wall underwent post-deposition heat treatment, and the other wall is treated without heat treatment. These samples are further investigated to evaluate the effects of deformation on the morphology, microstructure and mechanical properties.

Findings

As compared to as-deposited samples, the morphology can be significantly improved, the generation of defects and microporosity inside the alloy can be suppressed, and finer equiaxed crystals can be obtained with deformation of 30%. With heat treatment and 30% deformation, the Laves phase at the grain boundary is completely disappearing, more γ” and γ' strengthening phase is precipitated in the crystal and the size of the strengthening phase is smaller. Mechanical properties have been significantly improved.

Practical implications

HPAMR technology is used to successfully manufacture Inconel 718 superalloy aero-engine casing.

Originality/value

Compared with plasma arc additive manufacturing, HPAMR technology adds a rolling process, which can effectively improve the morphology of walls, refine internal grains, eliminate defects and microporosity, increase precipitation of strengthening phase and improve mechanical properties. It provides an optional manufacturing method for the integrated manufacturing of Inconel 718 parts.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 18